- Головна
- Готові шкільні презентації
- Презентація на тему «Гидравлический удар»
Презентація на тему «Гидравлический удар»
229
Слайд #1
Презентация на тему «Гидравлический удар»
По дисциплине «Гидравлические и пневматические системы»
Автор: Конев С.П.
По дисциплине «Гидравлические и пневматические системы»
Автор: Конев С.П.
Слайд #2
определение
Гидравлическим ударом называется колебательный процесс, возникающий в трубопроводе при внезапном изменении скорости жидкости, например при остановке потока из-за быстрого перекрытия задвижки (крана).
Гидравлическим ударом называется колебательный процесс, возникающий в трубопроводе при внезапном изменении скорости жидкости, например при остановке потока из-за быстрого перекрытия задвижки (крана).
Слайд #3
Описание процесса
Слайд #4
1 стадия
Слайд #5
1 стадия
скорость частиц жидкости, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается.
скорость частиц жидкости, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается.
Слайд #6
2 стадия
Слайд #7
2 стадия
Когда ударная волна достигнет резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы — растянутыми. Ударное повышение давления Δруд распространится на всю трубу
Когда ударная волна достигнет резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы — растянутыми. Ударное повышение давления Δруд распространится на всю трубу
Слайд #8
3 стадия
Слайд #9
3 стадия
Под действием повышенного давления (p0 + Δpуд) частицы жидкости устремятся из трубы в резервуар, причем это движение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение п—п перемещается по трубопроводу в обратном направлении — к крану—с той же скоростью с, оставляя за собой в жидкости давление
Под действием повышенного давления (p0 + Δpуд) частицы жидкости устремятся из трубы в резервуар, причем это движение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение п—п перемещается по трубопроводу в обратном направлении — к крану—с той же скоростью с, оставляя за собой в жидкости давление
Слайд #10
4 стадия
Слайд #11
4 стадия
Жидкость и стенки трубы возвращаются к начальному состоянию, соответствующему давлению р0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость υ0 но направленную в противоположную сторону.
Жидкость и стенки трубы возвращаются к начальному состоянию, соответствующему давлению р0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость υ0 но направленную в противоположную сторону.
Слайд #12
5 стадия
Слайд #13
5 стадия
С этой скоростью «жидкая колонна» стремится оторваться от крана, в результате возникает отрицательная ударная волна (давление в жидкости уменьшается на то же значение Δpуд). Граница между двумя состояниями жидкости направляется от крана к резервуару со скоростью с, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость Кинетическая энергия жидкости вновь переходит в работу деформации, но с противоположным знаком.
С этой скоростью «жидкая колонна» стремится оторваться от крана, в результате возникает отрицательная ударная волна (давление в жидкости уменьшается на то же значение Δpуд). Граница между двумя состояниями жидкости направляется от крана к резервуару со скоростью с, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость Кинетическая энергия жидкости вновь переходит в работу деформации, но с противоположным знаком.
Слайд #14
6 стадия
Слайд #15
6 стадия
Состояние жидкости в трубе в момент прихода отрицательной ударной волны к резервуару
Состояние жидкости в трубе в момент прихода отрицательной ударной волны к резервуару
Слайд #16
7 стадия
Слайд #17
7 стадия
процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью υ0.
Очевидно, что как только отраженная от резервуара ударная волна достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится
процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью υ0.
Очевидно, что как только отраженная от резервуара ударная волна достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится
Слайд #18
Теоретическая часть
Теоретическое и экспериментальное исследования гидравлического удара в трубах было впервые выполнено Н.Е.Жуковским.
В его опытах было зарегистрировано до 12 полных циклов с постепенным уменьшением Δpуд
Теоретическое и экспериментальное исследования гидравлического удара в трубах было впервые выполнено Н.Е.Жуковским.
В его опытах было зарегистрировано до 12 полных циклов с постепенным уменьшением Δpуд
Слайд #19
Ударное давление
В результате проведенных исследований Н.Е.Жуковский получил аналитические зависимости, позволяющие оценить ударное давление Δpуд. Одна из этих формул,
получившая имя Н.Е.Жуковского, имеет вид
Δpуд = ρυc,
где c - скорость распространения ударной волны
В результате проведенных исследований Н.Е.Жуковский получил аналитические зависимости, позволяющие оценить ударное давление Δpуд. Одна из этих формул,
получившая имя Н.Е.Жуковского, имеет вид
Δpуд = ρυc,
где c - скорость распространения ударной волны
Слайд #20
Скорость распространения ударной волны
скорость распространения ударной волны определяется по формуле слева от текста,
где K – объёмный модуль упругости жидкости;
E –модуль упругости материала стенки трубопровода
d– внутренний диаметр трубопровода
δ – толщина стенки трубопровода
скорость распространения ударной волны определяется по формуле слева от текста,
где K – объёмный модуль упругости жидкости;
E –модуль упругости материала стенки трубопровода
d– внутренний диаметр трубопровода
δ – толщина стенки трубопровода
Слайд #21
Фаза гидравлического удара
Фаза гидравлического удара t0 — это время, за которое ударная волна движется от крана к резервуару и возвращается обратно.
l – длина трубопровода
Фаза гидравлического удара t0 — это время, за которое ударная волна движется от крана к резервуару и возвращается обратно.
l – длина трубопровода
Слайд #22
Способы снижения вредного влияния гидравлического удара
увеличение времени срабатывания запорных устройств, перекрывающих поток жидкости.
установка перед устройствами, перекрывающими поток жидкости, гидроаккумуляторов или предохранительных клапанов.
Уменьшение скорости движения жидкости в трубопроводе за счет увеличения внутреннего диаметра труб при заданном расходе
уменьшение длины трубопроводов
увеличение времени срабатывания запорных устройств, перекрывающих поток жидкости.
установка перед устройствами, перекрывающими поток жидкости, гидроаккумуляторов или предохранительных клапанов.
Уменьшение скорости движения жидкости в трубопроводе за счет увеличения внутреннего диаметра труб при заданном расходе
уменьшение длины трубопроводов